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Abstract 

For the implementation of the recently ratified Paris Agreement, international parties to the 

United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance 

on the implementation of common metrics for the accounting of anthropogenic greenhouse gas 

emissions. Carbon dioxide (CO2) is the most significant greenhouse gas for radiative forcing, 

followed by short-lived climate pollutants (SCLPs) methane (CH4) and nitrous oxide (N2O). To 

date, the applied methodologies described by the Intergovernmental Panel on Climate Change 

(IPCC) are based on the usage of Global Warming Potentials (GWPs) to account for the climate 

impact of non-CO2 emissions under a single CO2eq metric. The usage of GWPs has been the 

subject of much scrutiny due to their strong dependence on an arbitrary choice of time-horizon, 

however there exists no consensus on the implementation of any alternative metric. Despite this 

criticism, GWPs remain widely-used in national greenhouse gas inventories and in research 

regarding to the carbon intensity of energy, land-use, and transport sector policies. This paper 

presents a review of GWP implementation, usage and alternative metrics with an emphasis on 

clarifying the subjective value-judgements inherent to each choice. As case studies research is 

reproduced in each of energy, urban planning policies showing that seemingly objective 

conclusions can change substantially depending on the subjective choice of GWPs. We present a 

case for disaggregating CO2eq metrics into individual gas emissions for policy synthesis. 
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1 Introduction 

Greenhouse gases (GHGs) are molecules in the atmosphere that absorb and emit thermal infrared 

radiation due to their molecular vibrations. Solar energy absorbed by the planet is released into 

space as infrared radiation, thus the presence of molecules that absorb and re-emit the outgoing 

radiation traps energy within the planetary system (Wang, Yung, Lacis, Mo, & Hansen, 1976). 

The change in the energy balance of the planet due to these trace gases is described as radiative 

forcing, in units of Watts per m2
. Water is the primary GHG in the atmosphere, but is treated as a 

feedback agent (and not forcing agent) due to its regular condensation and precipitation out of 

the gas phase in the hydrological cycle. The well-mixed GHGs most significant as radiative 

forcers are carbon dioxide (CO2) at 1.9 W/m2, methane (CH4) at 0.5 W/m2 and nitrous oxide 

(N2O) at 0.18 W/m2 (Intergovernmental Panel on Climate Change, 2014). From these 

mechanisms, the accelerated accumulation of GHGs in the atmosphere due to anthropogenic 

activities since the industrial revolution is responsible for the increasing temperature of the 

planet. These processes have been well-known for at least a century. The role of the atmosphere 

in trapping heat has been discussed as early as the 1820’s (Fourier, 1827), with the effect of 

carbon on warming the planet quantified as early as the 1890’s (Arrhenius & Holden, 1897). 

Describing this phenomenon as the ‘greenhouse effect’ was first in 1901 (Ekholm, 1901) and 

popularized by Alexander Graham Bell, who warned of the climate changing consequences of 

unchecked burning of fossil fuels in 1917 (Grosvenor & Wesson, 1997). 

Despite a long history of extensive scientific research, international cooperation and policies 

addressing the adverse effects of fossil fuel combustion and GHG emissions have continued to 

lag behind the knowledge. There now exists an additional novel problem whereby elected 

officials and significant fractions of the general public disregard scientific knowledge and 

continue to meet attempts at GHG mitigation policy with strong resistance (Dunlap, McCright, & 

Yarosh, 2016). To some degree, both of these phenomena can be understood in the context of the 

convenience of fossil fuels as an energy source and systemic economic dependence on their 

consumption. The communication of climate change science and the economic benefits of 

climate change policy (for current and future generations) thus become imperative to mobilizing 

an accelerated international response to an accelerating geophysical challenge. For this reason, 

discussions of geophysical processes may undergo simplifications in the process of 
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communicating science to policymakers and mobilizing international cooperation. These 

simplifications may be a cause of long-term systemic misunderstanding of fundamental 

processes, which can persist through efforts in the international policymaking framework 

In this light, currently-applied metrics to account for GHG emissions have received significant 

scrutiny because of their inherent over-simplifications (Allen et al., 2016; Farquharson et al., 

2016; Harmsen et al., 2016; O’Neill, 2003; Shine, Fuglestvedt, Hailemariam, & Stuber, 2005). 

As such, International parties to the United Nations Framework Convention on Climate Change 

(UNFCCC) have requested guidance on improving the implementation of common metrics for 

the accounting of anthropogenic greenhouse gas emissions (UNFCCC, 2015). In order to 

simplify the quantification of GHG mitigation policies, emissions of GHGs into the atmosphere 

are often grouped together under a single simplified CO2 equivalent metric (CO2eq). Masses of 

GHGs released are converted to a CO2eq value using global warming potentials (GWPs) outlined 

by the IPCC (Intergovernmental Panel on Climate Change, 2014). Because CO2 is the most 

significant GHG for climate change it is used as the reference point (1 gram CO2 = 1 CO2eq) 

with masses released of gases (CH4, N2O etc.) converted to a CO2eq value using a single integer 

conversion factor. GHGs are each unique molecules with different lifetimes, different physical 

and chemical cycles (sources and sinks) and thus different degrees of influence over the climate. 

CH4 for example has a significantly shorter lifetime than CO2 (~10 years CH4 vs ~200 years 

CO2) but is significantly more efficient at trapping heat during its existence (Intergovernmental 

Panel on Climate Change, 2014). This creates a phenomenon not explicitly captured in 

aggregated metrics whereby CH4 emissions have a high impact in the short-term with less-

impact in the long term (Shine, Berntsen, Fuglestvedt, Skeie, & Stuber, 2007). Therefore, there is 

no single metric that would convert the comprehensive impact and full life cycle of one GHG to 

another. Aggregated metrics for reduction targets then by nature include entangled subjective 

value judgements about geophysical and social priorities (Fuglestvedt et al., 2003; Houghton, 

Jenkins, & Ephraums, 1990). This is analogous to comparing apples to oranges and bananas in 

order to come up with a total recommended dietary fruit intake. While the single metric is a 

useful simplified measure, it makes unclear inherent judgements about specific nutritional needs 

(i.e. the need for bananas to be weighed heavier for those with hypokalemia, and avoided for 

hyperkalemia is unaddressed). Despite these complexities, the use of GWPs to generate CO2eq’s 

is the single most commonly applied metric in nearly all GHG accounting and climate policy. 
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National inventories often group GHG emissions and future reduction targets according to a 

CO2eq value. UNFCCC cooperative efforts have historically required parties to ratify reductions 

according to their carbon intensity in CO2eq units. The recent Paris Agreements has included a 

primary goal for the “…stabilization of greenhouse gas concentrations in the atmosphere at a 

level that would prevent dangerous anthropogenic interference with the climate system”, and has 

made explicit mandates to control warming below 2°C (UNFCCC, 2015). Reduction targets 

however still primarily follow suit according to CO2eq units. 

In this paper, the consequences of widely-used GWP and CO2eq values are investigated. The 

physical basis of GWPs and proposed alternative metrics are first described in detail. As a case 

study policy-relevant research evaluating the carbon intensity of energy sources is reproduced 

using alternative GWPs, showing that seemingly objective conclusions can change substantially 

depending on the subjective choice of metric. To conclude this work presents a case for 

disaggregating GHG emissions and describing policy by gas as a paradoxically simpler approach 

to climate policy. 

2 Scientific Basis of Global Warming Potentials (GWPs) 

GWPs are a comparison of the integrated (cumulative) radiative forcing of a pulse emission of a 

unit mass of a given pollutant to a unit mass of CO2 (Intergovernmental Panel on Climate 

Change, 2014): 

ሻݔሺܹܲܩ ൌ 	
 ೣ			∙		ሾ௫ሺ௧ሻሿௗ௧	
ಹ
బ

 ೀమ	∙ሾைమሺ௧ሻሿௗ௧
ಹ
బ

    (eq.1) 

Where GWP(x) is the global warming potential for a given pollutant x, TH is the time horizon 

over which cumulative radiative forcing is calculated, and ax is the radiative efficiencies due to a 

unit increase in the atmospheric mixing ratio of a given pollutant and [x(t]] is the time-decaying 

abundance of the pollutant. Non-linearity in the absorptive efficiencies are calculated by 

estimating scenarios of future mixing ratios. Because the lifetimes and radiative efficiencies of 

GHG’s vary significantly from gas-to-gas, the choice time horizon TH has a significant impact 

on the resulting GWP. For this reason, the IPCC reports GWP’s according to 20, 100 and 500-

year time horizons (Table 1). 
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Table 1: IPCC Fifth Assessment Report Global Warming Potentials (GWPs) (Intergovernmental 

Panel on Climate Change, 2014) 

 20-year GWP 100-year GWP 500-year GWP Lifetime (years) 

Carbon Dioxide 
(CO2) 

1 1 
1 

-a 

Methane (CH4) 84 28 7.6 12.4 

Nitrous Oxide 
(N2O) 

264 265 
153 

121.0 

CFC-11 6,900 4,660 1,620 45.0 

CFC-12 10,800 10,200 5,200 100.0 

aPrevious IPCC Assessment Reports (AR1-AR3) have listed the CO2 lifetime at 50-200 (1990) and 5-200 

(1995 and 2001), but since the Fourth Assessment Report (AR4 2007) the IPCC does not report a single 

lifetime for CO2 and instead a non-linear response function. 

 

Table 1 shows the GWP20, GWP100 and GWP500 values for the top five well-mixed greenhouse 

gases from the IPCC 5th assessment report (FAR). These are the reference values used in 

inventory reports for submission to the UNFCCC and are commonly employed in climate 

science and policy research papers, with the GWP100 value being the default metric in most 

cases. Interestingly during the initial proposal of using GWP metrics in the 1990’s, the 20, 100 

and 500-year time horizons were never meant to be authoritative in this way. In the first IPCC 

assessment report, Houghten described the three time horizons as “Candidates for discussion 

[that] should not be considered having any special significance” (Houghton et al., 1990). From 

this one can infer the global reference Table 1 has not necessarily been designed intentionally. 

Furthermore in the FAR, the IPCC states “There is no scientific argument for selecting 100 years 

compared with other choices…the choice of time horizon is a value judgement because it 

depends on the relative weight assigned to the effects at different times” (Intergovernmental 

Panel on Climate Change, 2014). So while this inherent subjectivity and the need for conscious 

value judgements is communicated explicitly, in practical use this does not happen. Because 

sheer systemic inertia has made the GWP100 the defining metric of GHG emissions, value 

judgements – whether correct or misguided – are made unintentionally. One resulting 

questionable outcome is the comparison of radiative forcing for CH4 over 100 years by using a 
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that threshold (i.e. anything below ~1000 kt of CH4). This includes more than half of the 

currently operating CH4 emitting landfill sites. In addition, for the landfill sites above the 

threshold, reductions in CH4 emissions (and thus total CO2eq) are more economic by simply 

expanding infrastructure, demonstrating systemic inequality in the cap-and-trade scheme. This 

may incentivize more aggressive CH4 capture systems in landfills in the future through market 

pressures. In any case, the use of a basket approach to aggregate GHG emissions to a CO2eq 

confounds the challenge beyond a direct approach to CH4 mitigation. 

4 Conclusions and Recommendations 

This paper was part of an effort to address the requests of international parties to the United 

Nations Framework Convention on Climate Change (UNFCCC) on the implementation of 

common metrics for the accounting of anthropogenic greenhouse gas emissions. 

Communications in the scientific community have questioned the ability for the Paris Agreement 

to be successful, given there appears to be a contradiction between the indicated GHG emissions 

reductions (if successful) and the targets to control peak warming by 2°C (Rogelj et al., 2009, 

2016; Rogelj, McCollum, O’Neill, & Riahi, 2013; Schellnhuber, Rahmstorf, & Winkelmann, 

2016; Victor & Kennel, 2014). Through investigating the scientific and international-policy basis 

for GHG emissions metric, it has been shown that the widely-used GWP100 contains several 

subjective value judgements. Because the application of GWP100 metrics have been widely 

accepted and applied without full explanation, these value judgements are being made 

unintentionally. An alternative metric, the GTP, was also evaluated. While the GTP provides a 

unique perspective on time-horizons through snapshot future changes in temperature, it retains 

the same problem of attempting to aggregate molecules with vastly different chemistry, cycles 

and lifetimes into a single basket. It has further been shown that these generalizations, while 

useful for providing binned targets for international emissions reduction policy, have the 

potential to suppress key areas of efficient climate change mitigation opportunities, particularly 

for SLCPs like CH4. It has been shown in the energy sector that the carbon intensity of Canadian 

Oil Sands production increases by 26% when using a GWP20 metric due to higher-weighted 

fugitive CH4 emissions. An investigation into these fugitive Oil Sands emissions also shows that 

there is the potential for reduction by 50%, which would also reduce the carbon intensity, an 

opportunity that has been perhaps overlooked due to the use of the GWP100 metric 
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underestimating the near-term impact of CH4 emissions. In a similar fashion, it has been shown 

that landfill biogas (CH4) capture technology and policy exists in Canada, however execution of 

this policy and the cap-and-trade policy to begin in 2017 is confounded by the aggregated metric. 

The use of the GWP20 metric once again increases these CH4 emissions by a factor of 3.3.  

The ultimate aim of the Paris Agreements and climate policy is to limit warming to below 2°C. 

Model projections have shown that this target will likely be surpassed within the next ~50 years. 

For this reason, parties to the UNFCCC should consider the implementation of shorter time-

horizon GWP metrics in order to better highlight non-CO2 emissions that can be opportunities 

for economically and environmentally attractive mitigation policies. Considering that in the last 

century of atmospheric policy there have been specific reductions for air-quality gases due to 

their specific chemical behavior, i.e. CFC’s for stratospheric ozone depletion, SO2 and NO2 for 

acid rain and smog formation and particulate matter as a public health issue, it should not be 

difficult to develop policy specific for each GHG. Indeed, the United States and Canada have 

recently agreed on a specific reduction target for CH4 of 45% from 2012-2025 (Prime Minister of 

Canada, 2016). The Prime Minister’s statement contains explicit reasoning that CH4 is of higher 

consequence for temperature changes in the near term and an attractive opportunity for 

economically feasible and aggressive reduction targets. These are clearly-made value judgements 

that are communicated to a) policymakers and decision-makers, b) international partners and c) 

the general public. While binning GHG’s for general-basket policy has proven useful, this is an 

excellent example of the benefit of disaggregating GHG’s. This case-by-case approach avoids 

the unclear value judgements made in metrics altogether for specific, strategic and effective 

policy. 
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